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The asymptotic stability, almost sure also in the mean square, of a viscoelastic system subjected to a load in the form of a random 
stationary broadband ergodic process is investigated. The behaviour of this system is described by integro-differential equations 
with stochastic parameters. The stability is considered with respect to the perturbation of the initial conditions. The governing 
relation is taken in an integral form with a creep (or relaxation) kernel of convolution type, which satisfies the condition of limited 
creep of the material. Using the fundamental solution of the corresponding deterministic integro-differential equation and 
its maximum Lyapunov exponent, the sufficient condition for stability of the zero solution of the initial equation or, which is 
the same thing, the equilibrium position of the viscoelastic system, is obtained. © 2000 Elsevier Science Ltd. All rights 
reserved. 

Integro-differential equations are encountered both in problems of viscoelasticity and in other areas 
of science, where it is necessary to take into account aftereffect or delay (for example, in control theory, 
biology, ecology, medicine, etc. [1-7]). When describing the behaviour of elastic systems, the internal 
friction of the material is usually taken into account using the Voight model, although it is well known 
that, even in systems with a finite number of degrees of freedom, greater than unity, it leads to incorrect 
results, since, for the majority of materials, the internal friction is, in fact, independent of or, at least, 
only slightly dependent on the rate of vibrations over a fairly wide frequency band. In this sense, a model 
of the material which possesses hereditary properties [8, 9], which also leads to integro-differential 
equations, is preferable. 

The problem of the stability of a viscoelastic rod, for the material of which the relaxation kernel is 
taken in the form of an exponential function or their sum, was solved in [10-12]. The rod is subject to 
a longitudinal force in the form of a stationary random process, represented by white noise. The condition 
for asymptotic stability with respect to the mathematical expectation and in the mean square was obtained 
in [11], and also the sufficient conditions for almost sure stability [10, 12]. 

When the load takes the form of an arbitrary stationary process, the sufficient conditions for almost 
sure and the mean square stability for distributed viscoelastic systems were obtained in [13]. 

However, an exponential-type kernel does not enable the internal damping of the material to be 
described adequately [9], and also the creep of many materials is described by kernels that are more 
complex than exponential (or degenerate). In such a case, when investigating the stability of systems 
it is not possible to replace the integro-differential equations by differential equations. When solving 
the problem of the stability of viscoelastic structural components, the material of which is subject to 
ageing [1-3], the external loads were assumed to be white noise. In a similar problem, the sufficient 
conditions for stability in the mean square were obtained for non-conservative systems in [14]. The 
sufficient condition for almost sure stability for a viscoelastic system under an arbitrary steady load and 
arbitrary relaxation kernel of the material was obtained in [12] using Lyapunov's direct method. 

It should be noted that the use of Lyapunov's direct method involves choosing a suitable Lyapunov 
functional, which, in the case of integro-differential equations, involves overcoming such difficulties 
that the procedure for constructing such functionals can be compared with art [15]. 

Below we consider a method of investigating the stability of the zero solution of a linear integro- 
differential equation based on the use of the fundamental solution of an auxiliary deterministic 
equation. 
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1. F O R M U L A T I O N  OF THE P R O B L E M  

We will assume that the relation between the stresses 6(t) and the strains e(t) in the uniaxial stressed 
state has the form 

t 

c = E(1 - R)E, RE ---- S R( t  - x)E('r)dx 
0 

where E = const is the modulus of elasticity of the material, R(t  - "c) is the relaxation kernel of the 
material and t is the time. 

In the case of an isotropic material the motion of a viscoelastic system, subject to a parametric load 
is described by an equation which can be represented in operator form as follows: 

~2u ~-t ~ t  2 +2E + ( 1 - R ) B u - C u  = 0 (1.1) 

Here u(x, t) is the displacement of the system and x is the spatial coordinate vector. For a fixed time t 
the function u can be considered as an element of Hilbert space H, while the operators B and C are 
linear operators from H into H. 

The solution of Eq. (1.1) must satisfy the initial conditions 

u(x,0) = Uo(X ), ~u(x,t)13tl,=o= v0(x ) 

The terms 2e~u/3t, Bu, Cu take into account the external damping (e is a characteristic of the external 
friction), the stiffness of the elastic system and the action of the parametric loads, respectively. 

Consider the related homogeneous problem described by the equation 

Bill = (j02U 

Its eigenfunctions q01, q02 . . . .  have the meaning of the natural forms of vibrations of the corresponding 
elastic system. The eigenvalues (o 2, (0~,.. .  are equal to the squares of the natural frequencies of this 
system and are related to the eigenfunctions by the Rayleigh relations 

(o,.2 = (a~0 i, q'i)/(~0i, q,i) 

The forms of the natural vibrations are pairwise orthogonal, so that the following equations hold 

(q0 i, q)j) = (Bq)i, q)i) = 0, (i ~ j)  

If q0i(x) are orthonormalized functions, u(x, t) can be expanded in a Fourier series in these functions 

u(x, t )  = ]~ f ~ ( t ) ~ ( x )  (1.2) 
i=1 

We will further assume that the functions q0i(x) are simultaneously eigenfunctions for the operator C. 
A similar situation is encountered fairly often [16], for example, when considering a rod of constant 

cross-section, hinged at the ends and subject to a longitudinal force applied at its ends, a rectangular 
plate of constant thickness, hinged along all the edges and subject to a uniformly distributed load acting 
in its plane and orthogonal to the edges, a circular cylindrical shell or cylindrical panel, rectangular in 
plan, hinged along the edges and subject to a uniformly distributed load, acting at the level of the middle 
surface of the shell and directed along the generatrix, etc. 

From Eq. (1.1) we then obtain an equation for the generalized displacements~(t) 

+2~.  + (o~(1- R -  a l ) f / = 0  (1.3) 

where ~/(t) is a dimensionless function characterizing the parametric load. Henceforth the function oq.(t) 
will be assumed to be a stationary random ergodic process. The dot denotes a derivative with respect 
to time t. 

The functions j~(t) must satisfy the initial conditions 

fi(O) = fio, dfi(t)l dt It=o=Vio 



where 
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.f/o = J" Uo ( x ~ i ( x ) d V ,  u io = J" Vo(X)cp/(x)dV 
V v 

and V is the volume of the system. 

2. THE STABILITY OF A V I S C O E L A S T I C  SYSTEM 

We will introduce the norm in the space of the functions u(x, t) 

II u(x,t)IIZ= j u 2 ( x , t ) d V  
V 

We will call the equilibrium position of the system u(x, t) ~ 0 stable in the mean square with respect 
to a perturbation of the initial conditions if for any small positive number A, as small as desired, there 
is a positive number 8(A) such that, from the condition (llu(0)ll z) < 8, which holds for the initial instant 
of time t = 0, we obtain the inequality (llu(t)ll 2) < A, that is satisfied at any instant of time t > 0. 

Here and henceforth the angle brackets denote the operation of mathematical expectation. 
The equilibrium position of the system is said to be asymptotically stable in the mean square if the 

previous condition is satisfied and, in addition, we obtain a 8 > 0 such that when (llu(0)ll z) < 8 

lira (II u(t)II 2) = 0 
l'--+~ 

Bearing in mind expansion (1.2) and taking into account the fact that the functions (Pi(X) a re  ortho- 
normal, the expression for the second-order moment of the norm of the displacements can be written 
as follows: 

(, u(t)  tt2> = .= f ,?(t)  = f~2(t)) (2.1) 

Hence, to solve the problem of the stability of the viscoelastic system in question we need to obtain 
an estimate of the second moment of the generalized displacements)~(t). 

3. S O L U T I O N  OF THE I N T E G R O - D I F F E R E N T I A L  E Q U A T I O N  

We will represent the stationary random process ~(t) in the form of the sum 

a i ( t  ) - . = - alo + a t (t), alo = ( a i ( t ) )  eonst 

where ot/(t) is a random fluctuation of the characteristics of the parametric load, (aT(t))  =- O. 
We will rewrite Eq. (1.1) as follows: 

2 * f /+  2edr/+ CO/2(1- R- alO)J ~ = t o i a i f  i (3.1) 

We will first consider Eq. (3.1) with zero right-hand side. 
We will use a Laplace transformation to solve it [17]. The transform of the functionfi(t) is then given 

by the expression 

Here 

¢J; (s) = sCJi(s)fio + ~(s)Uio (3.2) 

*~(s) = {s 2 + 2es + co/=[l - a;o - r(s)]}-1 (3.3) 

F(s) is the transform of the relaxation kernel R ( t  - "c) and s is a complex quantity. 
We will denote the original of the transformation ~ i ( s )  by Fi(t ) .  We know [17], that the original of 

the function s ~ i ( s )  is the derivative of the function Fi( t )  (Fi(O) = 0).  
As a result, integro-differential equation (3.1) can be replaced by an equivalent integral equation 

with kernel Fi( t  - z )  
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2 t 

fi(t) = Fi(t)fio + Fii(t)Uio + W i ~ Fi(t- 'r)a~(-t')j~ ('c)d't" (3.4) 
0 

We will further assume that the parameters c and ~0 are such that the zeroth solution of E.q. (3.1) 
with zero right-hand side is asymptotically stable. This means that the functions Fi(t) and Fi(t) are 
bounded for any finite value of the time and tend asymptotically to zero as t ---> o~. 

We will denote the maximum Lyapunov exponent of the solution of Eq. (3.1) with zero right-hand 
side by -~. (~- > 0) (~/is the characteristic number [18]) and represent the functions Fi(t) and Fi( t )  in 
the form 

Fi(t ) = Fii*(t)e -;~:, Fi(t) = Fi* (t)e -~:  
o , 

where the functions Fi (t) and Fi (t) are bounded in any finite time interval, and the maximum Lyapunov 
exponent for these is equal to zero. 

In Eq. (3.4) we will introduce, instead of the function fi(t), a new required variable 

y/(t) = e~:f~ (t) (3.5) 

which is the solution of the equation obtained after substituting (3.5) into (3.4) 

t 
e , 2 * o 

Yi(t) = F i ( t) f .  0 + F i (t)UiO + O) i ~ F i (t - T)a  i ('t')yi('c)d'c (3.6) 
0 

From Eq. (3.6) we obtain the inequality 

t 

l y i( t)  [~G i(t)  + 0)21 n i ( x )  lYl (x) ldx  (3.7) 
o 

Ci(t  ) =l Fi*(t)f/o + Fi*(t)Oio l, H i ( z  ) = 'l]imaxl~+(1;)+ l]iminl~i-('[; ) 

Tl/ma x --- sup Fi*(t- 'l;),  Tl/rain = inf F i * ( t - x  ) 
x~[0,t] xe[0,t] 

where a~(x) and coT(x) are functions of o(i(x) having non-negative and non-positive values, respectively. 
Taking into account the boundedness of the functions Fi(x)  and Fi*('c ) we have 

Gi(t) <-Ci, Ci = const 

and on the basis of the Gronwall-Bellman lemma [19] and inequality (3.7) we obtain an estimate of the 
function lYi(t)l, and using it we also obtain an estimate of the absolute value of the generalized variable lYi(t)l 

t 

I j~(t) I~C i exp{-~it + to/2I Hi(x)dx} (3.8) 
0 

Since the stationary random process a~(x) is centred and ergodic, we have 

! ] oct(x) = t~**lim-Io~i('[)d'ct o = t rnli t L0 + = 

Hence it follows that 

, , ,  , , o o> 
l i ~ l  Soc~[(x)dx lim ±Soc~(x)d't = ~- limSI oci('t) ldx = I oc i I 
t-~ t 0 t - ~  t 0 2 t--*** 0 

As a result, as t ~ oo, we obtain from inequality (3.8) 

I fi(t)I<~Ci exp{ [-/I, i + (.o? (0imax -/7imin)( I 0f7 l) / 2]t} (3.9) 

It is obvious that the estimate of the mathematical expectation (f~t)) is identical with the estimate 
of£('~). 

Hence, we can assert that the viscoelastic system considered will be asymptotically stable in the mean 
square if, for each number i, the following inequality is satisfied 
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(I a~ I) < 2X i/[(0/2(rlimax - rlimin)] (3.10) 

It can be seen from inequality (3.9) that the condition obtained is simultaneously asymptotic almost 
sure stability condition of the equilibrium position of a viscoelastic system [13]. 

4. T H E  S T A B I L I T Y  OF A V I S C O E L A S T I C  R O D  

Consider a rectilinear rod of constant cross-section, hinged at the ends and acted upon by a longitudin- 
al force P(t). Equation (1.1) in this case can be written as follows: 

~2u ~u E l  ~4u P 02u 
+ 2~-~-+ ~t 2 - ~ ( 1 -  R) O - ~ +  m 0--~ = °  

Here u is the deflection of the rod, x is a coordinate measured along the rod axis from one of its 
ends, E1 is the flexural stiffness of the rod and m is its mass per unit length. 

The boundary conditions at x = 0 and x = l (where I is the rod length) have the form u = O2u/~x2 = O. 
The functions (Pi(x), the natural frequencies co/, the quantities %0 and the functions a~o are defined 

by the expressions 

P12 - a l ° ,  a~(t) = a~(t) ~ .  in i4~4EI ai = a i o _  - i 2 q Ax)= TsmTx, (0/2= ml 4 ' i2~2Ei ' i 2 

The exponential relaxation kernel. Suppose that 

R(t - x) = xLe -x(t-x), X -  const, L = 7R(x)dx = const 
0 

The quantity L represents a measure of the material relaxation. 
The transform dPi(s ) of the fundamental solution Fi(t) of Eq. (3.2) in this case has the form 

(I) i ( $ )  = {32 "~" 2eS + (0/2 [1 -- aiO -- xL  I(s + X)] }-I 

The expression in square brackets vanishes at points corresponding to the roots of the cubic poly- 
nomial. Assuming the quantities e, X (e, X ~ ~ ) ,  which represent the external damping and the relaxation 
time, to be small compared with unity (more accurately, compared with the difference (1 - ~0), which 
is assumed to be positive), the roots of the cubic equation in the first approximation can be taken to 
be [13] 

s I = -X(1 - aio - L)/(1 - (gio), $2,3 = - a  +_ .f-~(0i b 

eX~ 

Finally 

F i (t) =Aie  sIt + B le -"  cos ¢oibt 4 Ci - aBie-" '  sin (0ibt 
(0ib 

A i = 
xL 

(1 - a i o ) g  
= - B i , .  C i = 1 - (2a + s I )A i, g = (2a + s I )s I + a 2 + c02b 2 

Bearing in mind that the quantities e and Z are small, we can put 

g --- (0/2b 2 = 00/2(1-aio) 

Fi(t)_ ~ xL (eSlt_e_at cos(0ibt)+ 1 e_at sin(0ibt 
00i 2 (1 -- O~i0 )2 (0ib 

Further we must choose the greatest of the quantities Sl and -a ,  which will also be the maximum 
Lyapunov exponent. 
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We will assume that Isll < a; then 7q = si. In this case 

~L [1 - e (-st-"×t-~) cos 0~i41 - aio t] + 
F/*(t - I:) = 01/2(1 - ai0)2 

+ l ~ e ( - S r a ) ( t - r ) s i n o g i ~ t  
tOi ~]l - Otio 

To find the extremal values of F~(t) we can take the derivative and find rlimax and ]]imin from the 
condition for it be zero. However, taking into account the fact that the ratio ffo~i is small compared 
with unity, without much error we can assume 

l 'l/max ~. -I- 1 

rl;m~n C O i ~  + C0/20-- a~O) 2 
(4.1) 

Hence, it follows from inequality (3.1 1) that 

~ / l - a i o  - L  (1o;)< (4.2) 

If the maximum Lyapunov exponent is equal to the real part of the complex conjugate roots s2 and 
s3, we have 

Fi, ( t_ .c)  = xL  [e(Sl+a)t_eosalibt]+ 1 s inwib t 
¢0/2 ( 1 _ 0¢io )2 (.Oi b 

In this case also the quantities "qimax and "qimin can be taken in the form (4.1). Then, to estimate the 
quantities (la~01) we have the relation 

(i=:i)<( , ]a]I-aio (4.3) 
2(I - aio) to i 

We will compare this result with that obtained using Lyapunov's direct method, first replacing the 
integro-differential equation for the generalized displacement j~(t) by a system of three first-order 
ordinary differential equations [13] 

Ifl2 ~, 1 - a i ° - L  
< • -%70 

0~i0 
(4.4) 

Hence, an estimate of (1~01) in the form (4.2) and (4.3) turns out to be more rigorous than estimate 
(4.4). This result might have been expected since the specific features of the exponential kernel of the 
material relation was in no way taken into account. 

A refinement of the values of Ylima x and 1]imi n does not lead to any appreciable changes in the results, 
which is confirmed by the data in Table 1, where we show values of the estimate of (1~i01)*, obtained 
numerically from (3.10) and the similar values of (1~01)* obtained from (4.4). 

The values ofsa and -a ,  shown in Table 1, were obtained by numerical solution of the cubic equation 

{s 2 + [2Es + CO/2 (I - aio)] }(s + Z)- °3/2XL = 0 

It can be shown that for small values of e, Z and L they are practically identical with the similar values 
obtained for sl and a written above. 

The results shown in Table 1 illustrate the effect of different parameters on the value of the estimate 
o 

of (lail). On the one hand, as might have been expected, as the value of the mathematical expectation 
of the longitudinal force increases there is a reduction in the estimate of (la~01).. On the other hand, it 
is noteworthy that an increase in the measure of relaxation for fixed values of the parameters e and Z 
does not lead to any appreciable change in the same estimate, at least for small values of ~0- It is also 
interesting to note that a change in each of the parameters e and Z separately, keeping the other 
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Table 1 

e X L ~.o -sl x105 

0.01 0.04 0.1 0 3600 
0.25 3467 
0.50 3201 
0.75 2401 
0.90 0 

0.04 0.01 0.1 0 900 
0.25 867 
0.50 800 
0.75 599 
0.90 0 

0.04 0.04 0.1 0 3600 
0.25 3466 
0.50 3198 
0.75 2391 
0.90 0 

0.04 0.04 0.01 0 3960 
0.25 3947 
0.50 3920 
0.75 3839 
0.90 3594 

0.04 0.04 0.05 0 3800 
0.25 3733 
0.50 3599 
0.75 3195 
0.90 1976 

0.04 0.04 0.005 0 3980 
0.25 3974 
0.50 3960 
0.75 3920 
0.90 3797 

0.02 0.02 0.00707 0 1986 
0.25 1981 
0.50 1972 
0.75 1944 
0.90 1858 

axl05 

1200 
1266 
1400 
1800 
3000 

4050 
4067 
4100 
4200 
4500 

× 1 o 

1075 
970 
861 
786 
0 

993 
843 
655 
374 
0 

1697 
1551 
1400 
1273 
0 

1273 
1061 
800 
424 
0 

4200 
4267 
4401 
4804 
6000 

4020 
4027 
4040 
4048 
4203 

4100 
4133 
4201 
4402 
5012 

4010 
4013 
4020 
4040 
4101 

2007 
2009 
2014 
2028 
2071 

3680 
3103 
2406 
1417 
0 

3548 
3016 
2407 
1607 
937 

3642 
3127 
2548 
1740 
872 

3537 
3002 
2389 
1581 
889 

1888 
1621 
1303 
902 
546 

5091 
4246 
3200 
1697 
0 

5600 
4834 
3920 
2885 
1610 

5734 
4572 
3600 
2263 
894 

5629 
4866 
3960 
2772 
1699 

2808 
.2426 
1972 
1374 
831 

o 

parameters unchanged, although it also leads to a change in the value of (lail)*, this change is not very 
large (for small o~). Nevertheless, a simultaneous change in the same parameters, again keeping the 

o 

other parameters fixed, leads to a considerable change in the estimate of (Isil)*. 
These assertions confirm the quite complex relationship between the parameters of the external 

o 

damping and the viscosity of the material and the critical values of the parameter (lo~il)*. 
It follows from (4.2) an d (4.3) that if they are satisfied when i = 1, they will be all the more satisfied 

when i > 1. On the basis of this we can assert that the rod will be asymptotically stable in the mean 
square (and almost sure) for an arbitrary form of the perturbing initial conditions if it is asymptotically 
stable for perturbations having the form of a single sinusoidal half-wave. 

A r e l a x a t i o n  k e r n e l  w i t h  a w e a k  s i n g u l a r i t y .  Consider the following relaxation kernel of a material 

R ( t  - z )  = - -  - -  
B e -a ( t -x )  

F(v) (t-'r) ~ 

where B, a and v are constants, 0 < v ~< 1. We will confine ourselves to analysing the stability of a rod 
when the perturbation of the initial conditions takes the form of a single half-wave of a sinusoid and 
hence the subscript will henceforth be omitted. 
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A measure of  the relaxation for such a kernel is 

B 
L = 7 R ( x ) d T  = a--- 7 

0 

The transform of the function R ( t )  has the form 

F(s) = B/(s  + a) v 

The transform of the function F( t )  can be written as follows: 

¢P(s) = [(s + a) 2 + 2(e - a)(s  + a)  + D -  B¢o 2 I(s + a) v ]-1 

D = co 2 (1 - a o) + a(a  - 2e) 

f rom which it follows that 

F(t)  = e ' a ¥ ( t )  (4.5) 

In turn, the transform of the function ~/(t) is 

W*(s) = [s 2 + 2(e - a)s  + D -  Bo~ 21 sV] -I (4.6) 

I f  v is a rational fraction, the transform q~(s) can be represented as a rational fraction, which in turn 
can be written in the form of the sum of simple fractions. 

Further, as an example we will consider the special case when v = 1/2 and co = 1. 
It  can be shown that the transform (4.6) has the original [17] 

1 ** z 2 

In turn, the function ¢(x) is the original of  the transform 

q~*(s) -- sl[s 5 + 2(e - a)s  3 + D s  - B I  (4.7) 

We will assume that the roots of  the equation 

s 5 + 2(e - a)s  3 + Ds - B = 0 (4.8) 

are a single real root sl and two pairs of  complex-conjugate roots 

s2, 3=2£ ! + i 0  I, s4, 5 = ~ + i 0 2 ,  i =  

Then 

tp(t) = Ate  -sIt + e -x j  t (A 2 cos 0it + A 3 sin 0 It) + e -x2t (A 4 cos 02t + A 5 sin 020 

Here  A 1 , . . . ,  A5 are constants. 
As a result, the fundamental  solution F( t )  can be represented in the form of the sum of 

functions 

FI(t)= AI e- [ - - ~ - s l e  effc(s l~tt) ]  

• f l  _~, ] F2y(t ) = ~2JL--~e - K f ( t ) ,  F2j+t(t ) = iA2j+lKf (t ) 

2 2t{ 1 ( - a + X j  ~-Oj ) ~ . ~-i2gjOjt 
K~(t) = :2 - e (~'i -- i•j)e erfc[(kj - iOy)~r~] + 

:!:(Xi + i0j)e ±i2xj%t erfc[(Z 9 + i0j)~r/)]} 
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Table 2 

e-----a L 

0.04 0.05 

0.04 0.005 

0.02 0.00707 

B 

0.01 

0.001 

0.001 

~o --a I xlO 5 -a2x 10 5 -a3xl0 5 (1~01)× 10 5 

0 3990 
0.25 3982 
0.50 3960 
0.75 3838 

0 4000 
0.25 4000 
0.50 4000 
0.75 3998 

0 1995 
0.25 1991 
0.50 1980 
0.75 1920 

4353 
4438 
4594 
4995 

4035 
4044 
4060 
4100 

2250 
2310 
2419 
2703 

3645 
3559 
3401 
2985 

3965 
3956 
3940 
3899 

1750 
1689 
1578 
1287 

3720 
3157 
2504 
1643 

3982 
3432 
2795 
1965 

1773 
1488 
1149 
688 

The maximum Lyapunov exponent of the function F(t) will be equal to the greatest of the expressions 

a l = - a + s  ~, a 2 = - a + ~ - O  ~, a 3 = - a - ~ , ~ + O  ] 

It is then easy to obtain an expression for the function F*(t). 
The forms of the function F(t)  and for the other combinations of the roots of Eq. (4.8) are obvious. 
As an example we will assume that the quantities e, a and B are fairly small. The roots of  Eq. (4.8) 

in the first approximation then turn out to be (when e = a) 

sl ~- B/D = B/(1 - ot o - a 2) 

s2,3 -- ~,1 + i0, s4, 5 = 2~ 2 + i0 

~.,=~/-D/2-,,/4, 2¢2=- ~--~-s,4. 0=~*~/D/2 

The maximum and minimum values of the function F*(t) are easier to obtain numerically and hence 
we obtain an estimate of  the quantity (Itz°l). 

The results of calculations of  (la I) for some values of the parameters  e = a, B and cz 0 are shown in 
Table 2. 

A comparison of the data in Table 2 with the similar data in Table 1 shows that for the same values 
of the parameters  L, e, × and a the values of  the estimate (Itz~l) in Table 2 are practically identical with 
the similar values of  (Itx~l). for all values of the parameter  ct0 in Table 1. The difference increases as the 
mathematical  expectation of the longitudinal force increases. This indicates that, from the point of view 
of system stability, a consideration of the weak singularity in the relaxation kernel of the material cannot 
have any appreciable influence on the values of the critical parameter ,  whereas the presence of this 
singularity considerably complicates the solution of the problem. 

The examples considered confirm that the proposed method is an effective means of investigating 
the stability of  the zeroth solution of linear stochastic integro-differential equations (the equilibrium 
positions of viscoelastic systems), which enables one to obtain an estimate of the critical value of (1%1) 
for fairly arbitrary relaxation kernels of  the material. 
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